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1.  Introduction 

In recent years we have witnessed widespread devel-
opment of acquired metabolic diseases in societies re-
sulting from improper diets. This phenomenon urgent-
ly needs some preventative steps based in promotion 
of a healthy lifestyle, which along with physical activ-
ity also requires changes in human diets. Functional 
foods enriched with natural bioactive substances have 
a beneficial impact on functioning of the body and can 
play an important role in prevention of diet-related 
diseases, e.g. obesity, type-2 diabetes, osteoporosis, 
hypertension and dyslipidaemia. Sources of these in-
gredients, also referred to as nutraceuticals, are found 
in both plant and animal raw materials.

Among the latter, whey is especially significant, since 
a troublesome by-product obtained during cheese 
production has become a valuable co-product of that 
process [Papademas & Kotsaki, 2020]. Whey consti-
tutes approx. 85–90% of milk volume used for cheese 
production with the use of rennet or acid coagulants 
(quarks). Depending on the method used for cheese 
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production, two types of whey can be obtained: ren-
net whey (sweet, pH 5.5–6.5) and acidic whey (pH 
between 4.6 and 4.7). Approximately half of the total 
solids remains in whey (approx. 6.5%), among which 
a major portion consists of lactose, while the remain-
ing compounds are mostly mineral salts and proteins 
containing approx. 20% of all milk proteins [Smithers, 
2008; Yalcin, 2006]. Despite their low concentration 
in whey (merely 0.6–0.7%), their nutritional and bio-
logical value is the highest not only among all milk pro-
teins, but also among other nutritional proteins [Mad-
ureira et al., 2007; Tsusumi & Tsusumi, 2014; Borad 
et al., 2017; Khan & Selamoglu, 2019]. The index of 
their nutritional value, expressed as the biological 
value (BV) is about 15% higher than that of egg pro-
tein used as a standard reference [Smithers, 2008]. It 
is due to the fact that their amino-acid composition is 
much richer in essential amino-acids as compared to 
other nutritional proteins, such as casein or egg white 
(Table 1). Worth noting in their composition is a very 
high content of branched-chain amino-acids (BCAA), 
i.e. leucine, isoleucine and valine and sulphur amino-
acids, especially cysteine. Branched-chain amino-ac-
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ids play an important role in nutrient metabolism and 
glucose homeostasis in blood as well as metabolism of 
lipids. Leucine itself plays a key role in the regulation 
of synthesis of skeletal muscle proteins [Chen et al., 
2014; Naclerio & Seijo, 2019; Minj & Anand, 2020]. 
Cysteine is a precursor of glutathione, an important 
compound reducing oxidative stress in cells [Bell, 
2000] and also enhancing the immune system of the 
body and protecting it from cancer [Tseng et al., 2006; 
Madureira et al., 2007; Trachootham et al., 2008].

Today, whey proteins are available on a commercial 
scale. The use of membrane filtration techniques and 
chromatographic methods enables their production 
on a larger scale in form of preparations of varied con-
centrations, such as whey protein concentrates (WPC) 
containing whey proteins within the ranges from 34% 
to 80%, whey protein isolates (WPI) containing more 
than 90% of those proteins, and besides, their individ-
ual fractions are also isolated [Baldasco et al., 2011; 
Kassem, 2015; Smithers, 2015]. Hydrolysates of those 
proteins are of great importance on the markets, since 
they turned out to be extremely attractive functional 
food additives [Meisel, 2005; Khan, 2013; Brandelli et 
al., 2015; Corrachano et al., 2018; Khan & Selamoglu, 
2019]. Controlled hydrolysis of the proteins reduces 
their allergenicity and increases their biological activ-
ity as a result of releasing the peptides with a wide 
spectrum of activity from their sequence. The hydroly-

sates are frequently used in food products for children 
and athletes as well as medical foods or “slim food” 
[Ha & Zemel, 2003; Zimecki & Kruzel, 2007; Korho-
nen, 2009; Madureira et al., 2010; Pihlanto, 2011; Ar-
tym & Zimecki, 2013; Brandelli et al., 2015; Li-Chan, 
2015; Kassem, 2015; Gupta et al., 2016; Madadlou & 
Abbaspourrad, 2018].

The preparations containing whey proteins also show 
good functional properties, related to their gelling and 
emulsifying properties as well as strong ability to bind 
water and create foams [Baldasco et al., 2011; Patel 
2015a; Soltani et al., 2017; Batista et al., 2018; Minj & 
Anand, 2020]. They are also able to bind fragrant com-
pounds to a greater extent than casein preparations 
[Livney, 2010]. Whey proteins, due to these proper-
ties, have been widely used in different industries, 
especially in food industry [Costa et al., 2021]. Some 
of them are also used as substitutes for synthetic sur-
factants in composition of many cosmetics [Król et al., 
2014]. Various enzyme or chemical modifications of 
these proteins improve their functional properties [Li 
et al., 2005; Smithers, 2015; Patel, 2018b; Wefers et 
al., 2018].

Whey proteins are becoming increasingly important 
in medicine, either directly as therapeutic substances 
[Marshall, 2004; Artym & Zimecki, 2005, 2013; Sousa 
et al., 2012; Pal & Radavelli-Bagatini, 2013; Ng et al., 

Table 1. Essential amino acids in proteins [g/100g protein] 

Amino-acids

Types of preparation Standards

1WPC 80
aw

1WPC 80
sw

3Calcium 
Caseinate

2Egg protein
3WHO/FAO 
 UNU 2007

Standard 

Isoleucine 5.9 6.6 4.5 5.9 2.8
Leucine 10.7 11.4 9.4 8.5 6.6
Lysine 12.5 9.8 7.1 6.3 5.8
Methionine 1.9 1.9 3.3 5.9 2.5
Phenylalanine 3.7 3.7 10.5 9.6 6.3
Threonine 5.0 7.6 3.8 4.7 3.4
Tryptophan 2.7 2.8 1.3 0.7 1.1
Valine 5.3 6.4 6.0 6.9 3.5
Histidine 2.6 2.5 3.2 5.4

aw-acid whey, sw- sweet whey
1 	 De Boer (2014)
2 	 Wereńska, M., & Okruszek, A. (2011). Wartość odżywcza różnego rodzaju jaj. Engineering Sciences & Technologies/Nauki Inżynierskie 

i Technologie,.
3 	 Jerzy Szpendowski, Krzysztof Siemianowski Engineering Sciences And Technologies 3(10) 2013 Właściwości Odżywcze I Funkcjonalne 

Oraz Zastosowanie Kazeinianów W Przetwórstwie Spożywczym
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2015; Gupta & Parakash, 2017; Amirani et al., 2020] 
or indirectly as substances used for encapsulation of 
drugs and other bioactive substances because of their 
ability to form nanocomposites [Livney, 2010, Janser 
et al., 2017; Varlamova & Zaripow, 2020].

As has been proven, those proteins have anti-inflam-
matory properties and beneficial influence on func-
tioning of the immune system, regulation of arterial 
blood pressure, blood glucose and cholesterol levels 
and also exhibit anti-cancer properties [Marshall, 
2004; Krissansen et al., 2007; Sousa et al., 2012; 
Zhang et al., 2016; Cicero et al., 2017; Corrochano et 
al. 2018; Teixeira et al., 2019; Yang et al. 2019; Vasi-
lyev et al. 2021]. Their consumption reduces a risk of 
metabolic syndrom and related diseases [Shertzer et 
al., 2011; Amirani et al., 2020]. Positive metabolic ef-
fects caused by the consumption of those proteins are 
also manifested in body weight losses, which is likely 
due to increased secretion of some hormones, such as 
glucagon like peptide (GLP1), leptins, cholecystokinin 
and reduction of ghrelin [Coker et al., 2012; Gillespie 
et al., 2015; Adams & Broughton, 2016; Sanchez-
Moya et al., 2020; Kondrashina et al., 2020].

Whey proteins are globular proteins. They consist of 
a mixture of many proteins of unique nutritional and 
biological characteristics as well as multifaceted ap-
plications [Krissansen et al., 2007; Smithers, 2008; 
Batista et al., 2018]. Quantity-wise, the greatest frac-
tions consist of the following proteins, listed in de-
scending order: β-lactoglobulin (β-Lg), α-lactoalbumin 
(α-La), immunoglobulin and serum albumin (BSA). 
Other proteins which occur at lower concentrations 
(<1%), but are also significant commercially are as fol-
lows: lactoferrin (LF), lactoperoxidase (LPO) and lyso-
zyme [Kassem, 2015]. Moreover, other bioactive pro-
teins are present in whey, including osteopontin and 
proteins capable of binding vitamins, growth factors 
and around 60 enzymes [Steijns, 2001]. Additionally, 
10-15 % of all the proteins found in the rennet whey 
are made up by glycomacropeptide, which is also iso-
lated on an industrial scale [Neelima et al., 2013].

2. Bioactive whey proteins

2.1. β-Lactoglobulin

The main protein present in whey is β-Lg, which in ru-
minants makes up 50–60% of its total proteins. β-Lg 
is also present in some monogastric animals, such as 
pigs, horses, dogs and cats, but not in the milk of hu-
mans [Kontopidis et al., 2004]. However, it exhibits 
homology with human plasma retinol-binding pro-
tein (RBP) [Papiz et al., 1986]. β-Lg is synthesized in 
epithelial cells of mammary gland as one of approx. 

10 genetic variants, of which the most common are 
genotypes A and B, characterised by different amino-
acid substitutions at positions 64 and 118, where Asp 
and Val are present in β-Lg -A, while Gly and Ala are 
present in variant B [Le Maux et al., 2014; Broersen, 
2020]. The structure of β-Lg contains 162 amino-acid 
residues, including 5 cysteine residues, of which four 
are engaged in the formation of disulphide bonds 
between Cys66 and Cys160 as well as Cys106 and 
Cys119. Cys121 is a free residue, buried within the 
structure of the protein in its native form, which when 
exposed as a consequence of denaturation can inter-
act through such interactions with other β-Lg mole-
cules or different proteins [Sava et al., 2005; Broersen, 
2020]. Cysteine 121 also plays a significant antioxi-
dant role of this protein and determines 50% of anti-
oxidative properties of milk [Liu et al., 2007].

β-Lg is characterised by a high content (approx. 
25.1%) of branched-chain amino acids, [Sousa et al., 
2012]. In physiological conditions, this protein is pres-
ent in bovine milk as a dimer (of MW 36.7 kDa) as 
a consequence of electrostatic interactions between 
Asp130 and Glu134 in one of the monomers and cor-
responding lysine residues in the other, but at pH<3 
and pH>8 it dissociates to monomers [Xu, 1996]. 
Within the pH ranges between 3.5 and 5.2 it forms 
octamers of MW approx. 140 kDa [Madureira et al., 
2007]. During heating to 65°C, reversible structural 
changes occur, it denaturates at 70–75°C, while at 
78°C to 82°C it forms aggregates [Sava et al., 2005]. 
Its thermostability depends on the genetic variant and 
pH of the environment, but it is the highest at pH 3 
[Boye et al 1996, 2004]. β-Lg belongs to a family of 
lipocalins, which contain a central cavity capable of 
binding various ligands, including small hydrophobic 
compounds, such as retinol, vitamin D2, cholesterol, 
aromatic compounds as well as saturated and unsatu-
rated fatty acids and phospholipids, which increase 
bioavailability of those compounds [Perez et al., 1995; 
Flower et al., 2000; Kontopidis et al., 2004; Le Maux 
et al., 2014; Teng et al., 2016; Broersen, 2020; Samoes 
et al., 2020]. Binding of retinol and β-carotene to β-Lg 
protects them from thermal degradation and oxida-
tion [Futterman & Heller, 1972; Hattori et al., 1995]. 
Curcumin, which is poorly absorbed and quickly me-
tabolised in the body, becomes more bioavailable and 
its antioxidative activity increases when it is bound to 
β-Lg [Li et al., 2013]. Moreover, it has been proven 
that docosahexaenoic acid (DHA) when conjugated 
with this protein is less susceptible to oxidative pro-
cesses at pH 7 and 40°C than free acid [Puyol et al., 
1991; Zimet & Livney, 2009].

By binding free fatty acids, which inhibit pre-gastric 
lipase, β-Lg can influence the process of digesting milk 
fats during infancy by increasing the activity of that 
enzyme [Perez et al., 1992]. In turn, β-Lg can inhibit 
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oxidative processes by binding metal ions, such as Cu 
and Fe in which a key role is played by a free sulfhydryl 
group [Liu et al., 2007]. β-Lg can also bind polyphenol 
compounds, such as resveratrol and epigallocatechin 
gallate (EGCG), forming complexes which modify bio-
logical and functional properties of the protein [Livney, 
2010, Shpigelman, et al. 2010; Kanakis et al., 2011].

In addition to its main function as a transport protein, 
it also plays a role in passive immunity in infants and 
in regulation of phosphorus metabolism in the mam-
mary gland [Broersen, 2020]. By inhibiting adhesion of 
the microorganisms to the surface of the epithelium 
in the intestine, it prevents its colonisation by patho-
gens at an early phase of an infection, either prevent-
ing or reducing it [Ouwehand et al., 1997]. β-Lg also 
has an inhibitory effect on replication of rotaviruses, 
the degree of which is dose-dependent [Chatterton et 
al., 2006]. Antiviral properties, including the activity 
against HIV, are increased by chemical modifications 
of the protein, such as acetylation and succinylation 
[Pan et al., 2005; Chatterton et al., 2006; Ng et al., 
2015]. As has been shown, β-Lg exhibits protective 
anti-cancer properties when administered orally, 
which is related to high content of sulphur residues 
in its structure [Pepe et al., 2013]. Sun et al. (2018) 
observed increases in anti-cancer and immunoregula-
tory activities of this protein after introduction of se-
lenium ions to its structure. Using a mice model, they 
confirmed in vivo a stronger action of Se- β-Lg against 
sarcoma cells from the line S180 and higher immuno-
regulatory activity. The ability of this protein to bind 
mutagenic heterocyclic amines blocks their cancero-
genic effects [Yoshida et al., 1991].

A disadvantageous feature of of β-Lg is the fact that 
it is the strongest allergen among all proteins present 
in milk, being responsible for 70–80 % of allergic reac-
tions to milk in children [Rahaman et al., 2015]. They 
affect around 2-3 % of children who usually lose the 
sensitivity to this protein after 3 years of age [Sousa et 
al., 2012; Petrotos et al., 2014].

β-Lg contains many epitopes of varying degree of al-
lergenicity, which are present along the whole length 
of its polypeptide chain. Some of them are linear 
sequences, while other, larger ones are conforma-
tional epitopes [Golkar et al., 2018; Villa et al., 2018]. 
Jarvinen et al. (2001) identified 7 epitopes (fragments: 
f1-16, f31-48, f47-60, f67-78, f75-86 and f127-
144) which bind to IgE and four (fragments: f49-60, 
f119-128, f129-138 and f143-152) binding to IgG. 
The research studies by Cong and Li (2012) confirmed 
that four epitopes in β-Lg binding to IgE, sequences 
f17-36, f72-86, f92-106 and f152-166 as well as 
two epitopes identified to be sequences f22-36 and 
f127-141 bound by IgG. They also demonstrated that 
threonine, methionine and aspartic acid residues at 

positions 20, 23 and 27, respectively were critical for 
β-Lg epitopes binding with IgE while leucine residue 
at position 26 and valine residue at position 31 were 
critical for the epitopes binding with IgG. Cerecedo et 
al. (2008) found that among different epitopes of β-Lg, 
two of them (corresponding to sequences f58-77 and 
f121-140) were recognised in 75% of patients allergic 
to milk.

β-Lg, due to its high nutritional value, is an important 
component of baby food, in which it is used in a form 
of a hydrolysate [Quintieri et al., 2017]. In addition, 
binding of this protein with other compounds, such as 
reducing sugars in the Maillard reaction and various 
technological processes, including long-term heating 
at high temperatures (85–100°C), reduce its allergenic 
potential [Bu et al., 2010; Rahaman et al. , 2015; Gol-
kar et al., 2018; Villa et al., 2018]. 

Wu et al. (2018) showed that covalent binding of β-Lg 
with polyphenolic compounds, such as EGCG and 
chlorogenic acid also decreases its allergenicity. 

Native β-Lg is generally resistant to enzymatic hydro-
lysis. Besides, it is not susceptible to degradation by 
pepsin, but it is digested by pancreatic enzymes in the 
small intestine [Pelligrini et al., 2001; Creamer et al., 
2004; Bossios et al., 2011]. Proteolytic enzymes of 
other origin also degrade this protein, although usually 
in a denatured form [Babij et al., 2014]. The peptides 
released from its structure exhibit a number of biolog-
ical activities. They are antioxidant biopeptides (con-
taining Leu, Pro, His residues in their structure), an-
timicrobial and hypotensive peptide able to decrease 
blood pressure by inhibiting enzyme converting an-
giotensin I  to angiotensin II (Angiotensin Converting 
Enzyme- ACE) , i.e. lactokinins, such as β-lactosin pep-
tide of the sequence Ala-Leu-Pro-Met f (142–145). 
β-Lg is also a source of opioid peptide β-lactorphin: 
Tyr-Leu-Leu-Phe f (102–105) and the memory-
improving peptide β-lactotensin: His-Ile-Arg-Leu f 
(146–149) [Meisel, 2005; Hernández-Ledesma et al., 
2008; Madureira et al., 2010; Brandelli et al., 2015; 
Świątek et al., 2019]. Nagaoka et al. (2001) identified 
a hypocholesterolemic peptide β – lactostatin (with a 
sequence: Ile-Ile-Ala-Glu-Lys f (71–75) in the trypsin 
hydrolysate of β-Lg, which suppressed cholesterol 
absorption by Caco-2 cells in vitro and also exhibited 
hypocholesterolemic activity in vivo in rats.

β-Lg exhibits attractive functional properties due to 
its amphiphilic structure and high stability in an acidic 
environment. It is able to form gels when heated. It 
has been used for encapsulating bioactive substances 
which can be safely transported through the acidic 
environment of the stomach directly to the small in-
testine by using β-Lg as the carrier [Madureira et al., 
2007; Świątek et al., 2019; Shpigelman et al., 2010; 
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Teng et al., 2016; Wilde et al., 2016; Simoes et al., 
2020]. Using various chemical modifications to β-Lg, 
either through phosphorylation or glycation, which 
affect its conformational changes, it is also possible 
to change the functional properties of β-Lg [Van Teef-
felen et al., 2005; Enomoto et al., 2007; Medrano et 
al., 2009].

2.2. α-lactalbumin

α-lactalbumin (α-La) is the second whey protein, 
which, like β-Lg, is synthesized in the secretory cells 
of the mammary gland. It is found in the milk of almost 
all mammals. In human milk it is the dominant protein 
(75%), but in cow’s milk it constitutes 20–25% of all 
whey proteins [Kamau et al., 2010]. 

α-La plays a very important physiological role by 
participating in the process of lactose biosynthesis. 
By attaching to β-galactosyltransferase, it increases 
its affinity to glucose in the final stage of milk sugar 
production from UDP-galactose and glucose in the 
mammary gland [Grobler et al., 1994; Qasba & Kumor, 
1997; McSweeney & Fox, 2013]. 

α-La constitutes a 40% identity in the amino acid se-
quence and shows high similarity in three-dimentional 
structure to lysozyme, which indicates that those pro-
teins diverge from a common ancestor, but their func-
tions vary, since α-La takes part in the synthesis while 
the lysozyme in the hydrolysis of the β-1,4-glycosidic 
bond [Permyakov & Berliner, 2000].

α-La is a small protein with 123 amino acid residues 
(MW 14.175 kDa) in its structure, including 8 cyste-
ine residues which form four disulfide bridges (Cys6-
Cys120; Cys28-Cys111; Cys61-Cys77; Cys73-Cys91) 
stabilizing its spatial structure. It is also a metallopro-
tein that binds calcium which improves its molecular 
stability and protects it against thermal denaturation 
[Hiraoka et al., 1980]. Removal of calcium decreases 
thermal stability of α-La, although it shows the great-
est heat resistance among all whey proteins. It dena-
turates at 62–65°C, but 90% of it renaturates after 
cooling. It becomes completely denatured at 70–80°C 
[McGuffey et al., 2005]. At higher temperatures, α-La 
free of calcium ions forms a classic molten globule, 
similarly to native protein in an acidic environment 
[Hochwallner et al., 2014]. Native α-La is able to 
bind and transport also other ions, e.g. Mg, Zn, Co, 
although calcium substitution for zinc decreases its 
thermal stability [Permyakov & Berliner, 2000]. α-La is 
a monomer at the pH of milk and a reversible aggrega-
tion occurs at acidic pH. 

The structure of α-La is 72% homologous with human 
α-lactalbumin. For comparison, bovine α-La contains 
more His, Trp and Val than human α-La. On the other 

hand, human α-La is richer in Ile, Leu and Met residues 
(Table 2). The concentrations of other essential amino 
acids in these proteins are at similar levels [Lönnerdal 
& Lien, 2003; Kamau et al., 2010]. α-La is the most 
valuable milk protein in nutrition. Among all food pro-
teins, α-La exhibits the highest content of tryptophan 
(5.9%), a serotonin precursor [Ruddick et al., 2006].

It can, therefore be concluded that consumption of this 
protein increases the level of this neurotransmitter in 
the brain, reduces the concentration of cortisol, has an 
anti-stress effect and improves cognitive abilities and 
mood [Markus, Olivier, Panhuysen et. al., 2000; Markus, 
Olivier, De Haan et. al., 2002; Orosco et al., 2004].

α-La, next to β-Lg, is the second important allergen 
among whey proteins, which often causes allergic re-
actions to milk in children. As shown previously, its 
structure contains many epitopes capable of bind-
ing to specific IgE and IgG antibodies (Jarvinen et al., 
2001; Hochwallner et al., 2014; Golkar et al., 2018). 
Jarvinen et al., (2001) identified four fragments of this 
protein that react with IgE: f (1-16), f (13-26), f (47-
58), and f (93-102) as well as three fragments bind-
ing to IgG, corresponding to the sequences: f (7-18, 
f (51-61) and f (89-108). On the other hand, Cong et 
al., (2016) showed five fragments that react with IgE: 
f (1-15), f (6-20), f (46-60), f (71-85), f (101-115) and 
four IgG binding epitopes, corresponding to the se-
quences: f (6-20), f (21-35), f (36-50) and f (86-100).

As has been found α-La has beneficial effects on the 
organism’s physiological processes. Matsumoto et al. 
(2001 found that it had protective effects on ethanol-
induced stress and gastric diseases (gastric ulcer) by 
increasing prostaglandin levels. Administration of this 
protein in an optimal dose of 200 mg/kg body weight 
per day proved to be effective in the treatment of 
these diseases. Krissansen (2007) found α-La to be ef-
fective in preventing the binding of enteropathogenic 
bacteria, i.e. E. coli, Salmonella typhimurium and Shigella 
flexneri to intestinal epithelial cells. Its antibacterial ac-
tivity against both Gram-positive and Gram-negative 
bacteria is enhanced by interaction with lysozyme, 
with which it associates under physiological pH condi-
tions [Expósito & Recio, 2006].

α-La also demonstrates anti-cancer properties. Bruck 
et al. 2014 found its ability to inhibit proliferation 
of certain tumor cell lines. Many other authors have 
confirmed that complexes of human and bovine α-La, 
free of Ca ions (apo-form), with oleic acid (C18:1:9cis), 
abbreviated as HAMLET and BAMLET, respectively, 
exhibit strong anti-cancer activities [Fast et al., 2005; 
Barbana et al., 2011; Delgao et al., 2015]. These com-
plexes can enter neoplastic cells, bind to histones and 
disrupt chromatin organization in the cell nucleus. 
As a result, they induce apoptosis of many cancer 
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lines, such as human skin papilloma and glioblastoma 
[Fischer et al., 2004; Lišková et al., 2010; Fontana et 
al., 2013; Rath et al., 2015; Delgado et al., 2015; Hsieh 
et al., 2015]. α-La hydrolysates free of allergic effects 
also exhibit a number of biological activities. Pellegrini 
et al. 1999 reported that its hydrolysates obtained by 
trypsin and chymotrypsin digestion exhibited bacteri-
cidal activity, mainly against pathogenic Gram-positive 
bacteria. Besides, they also had a stimulating effect on 
the growth of bifidobacteria.

A broad spectrum of activity is exhibited by the bio-
peptide α-lactorphine with the sequence Tyr-Gly-
Leu-Phe, a fragment of 50-53 α-La, released as a 
consequence of digestion by pepsin, which shows a 
structural similarity to the human opioid peptide Leu-
enkephalin (with the sequence Tyr-Gly-Gly- Phe). By 
stimulating the opioid receptor, it relieves pain, alle-
viates blood pressure and shows immunomodulatory 
and antibacterial activity against E. coli Q127. It also 
exhibits anti-cancer activity. Peptides released from 
the C-terminus of α-La, which are fragments of its 
sequence: f 99-108 and f 104-108, exhibit high anti-
hypertensive activity. Another biopeptide Gly-Leu-
Phe f 51-53 shows an immunomodulatory effect by 
stimulating phagocytosis in macrophages [Chatterton 
et al., 2006; Madureira et al., 2010]. In general, α-La 
hydrolysates exhibit immunostimulatory properties 
through the activation and proliferation of lympho-
cytes, stimulation of cytokine secretion and antibody 
production [Gauthier et al., 2006]. 

α-La, due to its high nutritional value and its positive 
effects on gastrointestinal microbiota, immunomodu-
lating action and stimulation of brain development and 
growth in children, is widely used in their diets [Layman 
et al., 2018; Nielsen et al., 2020]. It is also a component 
of many foods for adults. α-La also exhibits attractive 
functional properties. When subjected to limited hy-
drolysis with the use of serine protease from Bacillus 
licheniformis under appropriate pH conditions and in 
the presence of a divalent cations, it shows the ability 
to form self organized nanotubular structures which 
can be widely used as carriers of various substances, 
including those with a therapeutic effect [Graveland-
Bikker et al., 2005; Ipsen & Otte, 2007].

2.3. GMP

GMP, a glycomacropeptide is another major pro-
tein present in rennet whey, processed on a larger 
scale than acid whey. It is a product released from 
κ-caseins via the action of a coagulating enzyme, that 
is chymosin or its substitutes. It is also released un-
der physiological conditions after milk consumption 
as a result of protein hydrolysis by pepsin. In recent 
years this peptide has become especially interesting 
due to its unique physicochemical, nutritional and 
health-promoting properties. GMP is a fragment of 
the C-terminal sequence (f 106-169) of κ-casein with 
a MW of about 7.50 kDa and a pI at pH 3.15 [Cór-
dova-Dávalos et al., 2019] for glycosylated GMP and 
4.15 for non-glycosylated form [Kreuß et al., 2009]. 

Table 2. Amino acid composition of bovine and human α-lactalbumin (%) (Lönnerdal and Lien, 2003).

Amino-acids 
Essential and 
conditionally 

essential

Bovine Human
Amino-acids 
Nonessential

Bovine Human

Isoleucine 6.4 9.7 Alanine 1.5 2.5

Leucine 10.4 11.3 Asparagine 6.4 3.2

Lysine 10.9 10.9 Glutamine 5.4 6.4

Methionine 0.9 1.9 Glycine 2.4 2.4

Cysteine 5.8 5.8 Proline 1.4 1.4

Phenylalanine 4.2 4.2 Serine 4.3 5.0

Threonine 5.0 5.0 Aspartic acid 10.6 9.8

Tryptophan 5.3 4.0 Glutamic acid 6.4 7.4

Tyrosine 4.6 4.6 - - -

Valine 4.2 1.4 - - -

Histidine 2.9 2.0 - - -

Arginine 1.1 1.1 - - -



39

It exhibits strongly hydrophilic properties, mainly due 
to the presence of sugar components in its structure 
which also contribute to its heterogeneity. They are 
most often (approx. 75%) in the form of tri - and tetra-
oligosaccharides, composed of galactose, N-acetyl-
galactosamine and sialic acid, connected with GMP by 
O-glycosidic bonds with threonine residues and one 
serine [Brody, 2000; Sawin et al., 2015]. The presence 
of sugars, especially sialic acid, has a significant influ-
ence on biological activity of this oligopeptide [Fer-
nando & Woonton, 2010]. Amino acids: Pro, Glu, Ser 
and Thr are abundant residues in GMP composition, 
while aromatic residues (Phe, Tyr and Trp) as well as 
His, Cys and Arg [Brody, 2000] have not been found. 
Due to the lack of phenylalanine in its composition, it 
is a valuable dietary product, produced on an indus-
trial scale for people suffering from phenylketonuria 
[Laclair et al., 2009]. Its special nutritional value is 
also due to the high content of branched-chain amino 
acids (mainly Ile and Val), which together with a low 
content of methionine, makes GMP a valuable com-
ponent of the diets for individuals with diagnosed liver 
diseases [Korhonen, 2009]. Many authors reported 
its significant impact on functioning of the digestive 
tract [Brody, 2000; Manso and Lopez-Fandino, 2004; 
Tulipano, 2020]. GMP has been shown to inhibit gas-
tric acid secretion. It is also believed to stimulate the 
secretion of cholecystokinin, the satiety hormone 
regulating the appetite, although this was not clearly 
confirmed in other studies [Poppit et al., 2013]. This 
oligopeptide exerts positive impact on the microflora 
of the gastrointestinal tract, especially the growth of 
bifidobacteria, which is related to the presence of sug-
ar moiety in its structure [Manso and Lopez-Fandino, 
2004; Li and Mine, 2004; Sawin et al., 2015; O ‘Riodan 
et al., 2018]. The beneficial effects of GMP on brain 
development and improvement of learning ability, as 
demonstrated by the authors who conducted studies 
on animal models, are attributed to its high content 
of sialic acid [Wang et al., 2009]. On the other hand, 
the high content of threonine in the sequence of GMP 
present in dietary supplements for infants (especially 
premature infants) are likely to cause hypertreonin-
emia [Rigo et al., 2001].

GMP also exhibits antimicrobial properties. In vitro 
studies showed that it inhibited the adhesion and 
growth of Streptococcus mutans and Streptococcus so-
brinus bacteria involved in plague formation, therefore 
it is added to commercially available anti-caries dental 
preparations [Brody, 2000; Setarehnejad et.al., 2010]. 
Rhoades et al. (2005) found that GMP inhibited adhe-
sion of pathogenic E.coli strains (VTEC and EPEC) to 
HT29 human colon cancer cells. Zimecki et al. (2006) 
reported a protective effect of glycomacropeptide 
against endotoxemia and bacteraemia in mice. More-
over, GMP is able to inactivate Vibrio cholerae toxins 
as well as E. coli LT I and LT II enterotoxins, and also 

inhibit hemagglutination caused by four strains of hu-
man influenza virus [Kawasaki et al., 1992; Zimecki et 
al., 2005, 2007].

GMP also affects functioning of the immune system 
[Brody, 2000; Zimecki et al., 2006; Cordova-Davalos et 
al., 2019]. It has been shown that it stimulates phago-
cytosis and proliferation of human macrophage cells of 
the U937 lineage [Li and Mine, 2004] and accelerates 
proliferation of human B cells, but not T cells [Brody, 
2000]. It shows anti-inflammatory effects and also in-
creases production of the cytokines in human mono-
cytes [Sawin et al., 2015; Requena et al. 2009, 2010]. 
Numerous authors reported therapeutic properties 
of GMP, including its preventive and therapeutic ef-
fects on metabolic processes and associated diseases 
[Thomä-Worringer et al., 2006; Sauve et al., 2021].

The products of GMP hydrolysis also exhibit pro-health 
properties. Biopeptides with antithrombotic activity 
derived from its N-terminal sequence were identified 
among them, including undecapeptide (f106-116) 
called casoplatelin, which inhibited both the aggre-
gation of ADP-activated platelets and the binding of 
fibrinogen chains to receptors on the platelet surface. 
The smaller biopeptide, constituting a 106-110 frag-
ment of GMP called casopiastrin isolated from trypsin 
hydrolysates, showed anticoagulant activity by inhib-
iting fibrinogen binding [Clare and Swaisgood, 2000]. 
In addition to nutritional and biological values, GMP 
also exhibits desirable functional properties, such as 
solubility at wide pH ranges, high thermal stability, 
foaming, gelling and emulsifying properties, which can 
be improved by conjugating GMP with fatty acids or 
sugars [Neelima et al., 2013]. Due to all these proper-
ties, GMP is used as an attractive additive to various 
food products.

2.4. Immunoglobulins

Mammalian whey proteins include blood-derived im-
munoglobulins which are passed on as immune anti-
bodies with mother’s milk to newborns. Their compo-
sition varies depending on the species. In ruminants, 
immunoglobulins G: IgG1 and IgG2 are dominant, 
constituting approx. 75% of their total concentration 
[Kassem, 2015]. In addition, Ig M and Ig A are also 
present. Immunoglobulin content is the highest in 
colostrum (approx. 48 g/L), in which they constitute 
70–80% of all milk proteins [Steijns, 2001]. Their con-
centration in whey is approx. 9% of all its proteins. It 
is possible to increase the level of immunoglobulins by 
immunization of cows against specific pathogens or 
antigens [Mehra et al., 2006; Pihlanto, 2011; Karho-
nen, 2009]. They condition specific humoral immunity 
of the body and play a role in fighting bacterial infec-
tions by agglutination, bacteriolysis, bacteriostasis or 
opsonization. They also neutralize viruses and toxins 

Chrzanowska J., Dąbrowska A., Szołtysik M., Whey proteins – as nutraceuticals of health benefits



Journal of Biomedical Research and Therapeutics, 2022, 1(1)  

40

and are also capable of binding the proteins of the 
complement system [Mehra et al., 2006]. Numerous 
clinical studies confirm the effectiveness of immuno-
globulin preparations against oral pathogens (Str. mu-
tans, Candida albicans), and Helicobacter pylori, which 
causes gastric ulcers as well as Cryptosporidium par-
vum, which causes diarrhoea in immunocompromised 
individuals and against enteropathogenic E. coli infec-
tions in children [Severin et al., 2005; Steijns, 2001; 
Korhonen, 2009]. Oral administration of an immuno-
globulin concentrate, especially in encapsulated form 
enclosed in gastric acid-resistant coatings, can pre-
vent the body from bacterial infections [Steijns, 2001; 
Bostwick et al., 2000; El-Loly, 2007].

IgG2 is accompanied by a complex of proline-rich 
peptides, referred to as colostrinins. It contains a mix-
ture of peptides of MW < 10 000 Da. Their compo-
sition is dominated by two amino-acids: proline and 
glutamic acid (more than 20% and 18%, respectively) 
[Sokołowska et al., 2008]. Their sequence shows ho-
mology to protein precursors: beta - casein and hypo-
thetical beta - casein homologue. This complex exhib-
its  antioxidant and anti-inflammatory effects. It was 
also found that it regulated the growth and differen-
tiation of lymphocytes and inhibited pathological pro-
cesses related to β amyloid aggregation in people with 
degenerative changes in the central nervous system 
[Zimecki & Kruzel, 2007; Zabłocka & Janusz, 2012; 
Zabłocka et al., 2020].

2.5. BSA

BSA (bovine serum albumin), which is present in blood 
(it accounts for 50% of all blood proteins) also consti-
tutes a portion of albumins present in whey, in which 
it constitutes approx. 8% of all its proteins (0.02–0.35 
mg/ml) [Maduiro et al., 2007]. It is a protein with an 
MW of about 66 kDa, characterized by a high con-
tent of essential amino acids and the presence of 17 
disulfide bridges and one free sulfhydryl group [Mc-
Sweeney and Fox, 2013]. The sequence of this pro-
tein is in 75% homologous to human serum albumin. 
BSA mainly functions as a transport protein for many 
ligands, including long-chain fatty acids, steroid hor-
mones and metal ions [Krissansen, 2007]. BSA is also 
a source of bioactive peptides, such as albutensin 
(f208-216) and serophin (f399-404) exhibiting opioid 
activity [Madureira et al., 2010].

2.6. Lactoferrin

Lactoferrin (LF) is a complex, multifunctional protein 
present at a highest concentration in colostrum. In 
normal cow’s milk, its content is many times lower 
and amounts to an average of 0.2 g/L, i.e. about 2% 
of whey proteins. LF is a glycoprotein from the family 
of transferrins involved in chelation and transport of 

iron. It consists of a single polypeptide chain with an 
MW of about 80 kDa, containing about 700 amino-
acid residues, among which the most frequent are: 
alanine, leucine and glycine, which make up 10%, 9% 
and 7% of LF composition, respectively [Niaz et al., 
2019]. LF contains 14 disulfide bridges in its struc-
ture. Its molecule is made up of two N- and C-termi-
nal lobes connected by a short α-helix, which makes 
it very flexible. The lobes, which exhibit homology at 
a level of 31-41%, additionally have two domains, N1 
and N2, as well as C1 and C2, respectively [Giansanti 
et al., 2016]. Bovine LF shows 69% structural similar-
ity to that of human milk LF [Steijns, 2000]. A char-
acteristic feature of Lf is highly basic character, with 
the pI in the range of 8.0-8.5 [van der Strate et al. 
2001]. 

Lactoferrin contains from 6.7 to 11.2% of sugars, 
which also influence heterogeneity of this protein 
[O’Riordan et al., 2014]. They include: N-acetylglu-
cosamine, acetylgalactosamine, galactose, fucose, 
mannose and neuraminic acid, N-linked with Asn233, 
Asn281, Asn368, Asn476 and Asn545 [Rascon-Cruz 
et al., 2021]. The degree of Lf’s glycosylation affects 
its resistance to proteolysis by digestive enzymes and 
it;s sensitivity tolow pH of the environment. Lf can ex-
ist in three different isoforms: α, γ and β, but only the 
first isoform has the ability to bind iron ions. The other 
two isoforms exhibit ribonuclease activity, especially 
against mRNA [Furmanski et al., 1989; Garcia-Mon-
toya et al., 2012; Karav et al., 2017]. The LF molecule 
can bind 2 ions of this metal, one in each lobe, and 
each ion is bound by 4 amino acid residues: Asp, two 
Tyr residues and His.This process is accompanied by 
binding of a bicarbonate anion by the arginine residue. 
Iron binding is a reversible process, therefore LF can 
also exist as apo-LF without iron or as holo-LF when 
bound to metal ions. Typically, LF is saturated only in 
15%. Depending on the presence of iron, LF may also 
show different levels of biological activity [Wang et 
al., 2019]. LF can also bind other metal ions, such as 
Co, Mn, Cu, Zn, although with a lower affinity [Steijns, 
2000]. Apo-LF, as compared to holo-LF, has a more 
open structure and thus a greater susceptibility to hy-
drolytic decomposition and the denaturing effect of 
high temperatures [Karav et al., 2017]. Form of Lf de-
terminates not only thermal stability but also biologi-
cal functions. Pasteurization of milk at 72–74°C for 15 
sec has practically no effect on Lf structure, whereas 
ultra-high temperature (UHT) treatment at 135°C for 
4 sec results in the loss of iron binding ability and an-
timicrobial characteristics [Sanchez et al., 1993; Karav 
et al., 2017].

The range of biological functions of LF is extremely 
wide, which fully entitles it to be called a multifunc-
tional protein. It is the innate immunity protein of the 
body which strongly influences its acquired immunity. 
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It is the body’s first line of defence against bacterial in-
fections and thus protects and stimulates the growth 
of the intestinal epithelium, especially in premature 
infants. Initially, its protective antimicrobial effect was 
attributed to the sequestration of iron, necessary for 
growth of many pathogenic bacteria. However, the 
more effective bactericidal activity of LF results from 
its direct interaction with the cell wall of microorgan-
isms, both Gram-positive and Gram-negative bacteria 
as well as fungi and protozoa [Castri et al., 2017; El-
Loly et al., 2011; Garcia-Montoya, 2012; Artym, 2012; 
Lodhi et al., 2019; Rascon-Cruz et al., 2021]. By bind-
ing to the structures of their wall via the N-terminal 
fragment of a strongly cationic nature, causes its de-
stabilization and cell damage. LF also prevents adhe-
sion of pathogens to host tissues by binding to bacte-
rial adhesins, and also exhibits enzyme activity against 
their protein virulence factors. The direct antimicro-
bial action of LF is also caused by inhibition of the pro-
cess of biofilm formation by bacteria, which is more 
resistant to the host’s protective mechanisms and to 
antibiotic therapy. It may also result from its antioxi-
dant properties related to the chelation of pro-oxida-
tive metals and free radicals scavenging by its sulfur 
residues [Khan & Selamoglu, 2019]. LF also exhibits 
broad antiviral activity against animal and human RNA 
and DNA-viruses, including hepatitis C, HIV, herpes 
viruses and rotaviruses, and influenza virus [Superti et 
al., 2001; van der Strate et al., 2001; Berkhout et al., 
2004; Pan et al., 2006; Garcia-Montoya et al., 2011; 
Berlutti et al., 2011; Redwan et al., 2014; Niaz et al., 
2019]. The mechanism of this action is based on its in-
teraction with viral particles or with their receptors on 
the surface of target cells. The ability of LF to bind to 
receptors, also those of the coronavirus, has recently 
become an incentive to conduct studies on its use for 
prevention and treatment of SARS CoV-2 [Wang et al., 
2020; Kell et al., 2020; Hu et al., 2021; Salaris et al. 
2021].

A broad spectrum of antimicrobial activity of LF also 
results from its interactions with other bioactive com-
ponents present in whey proteins, such as lysozyme 
and lactoperoxidase or osteopontin [Leitch & Willcox, 
1998; de Andrade et al., 2014; Nakano et al., 2019; 
Jiang et al., 2020]. Some chemical modifications of LF 
increase its biological properties as well, including an-
tibacterial and antiviral or anti-cancer properties [Pan 
et al., 2007; Najmafshar et al., 2020].

LF, by inhibiting the development of pathogens, simul-
taneously modulates composition of the gastrointes-
tinal microflora and stimulates growth of probiotics, 
mainly from the genera of Bifidobacterium and Lacto-
bacillus. Its beneficial effects also extend to other tis-
sues and organs of the body, including the respiratory 
system, urinary system and skin [Artym & Zimecki, 
2020, 2021; Superti, 2020].

The bactericidal properties are found not only in the 
native LF protein, but also in the products of pep-
sin hydrolysis, which show amphipathic properties. 
Among them, peptides derived from N-terminal end, 
referred to as lactoferricins, were identified [Madu-
reira et al., 2010; Sinha et al., 2013]. They are pep-
tides of sequences 1-11 and 17-41. The peptide of 
the first sequence turned out to be effective against 
5 particularly drug-resistant strains of Acinetobacter 
baumanii bacteria and Staphylococcus aureus resistant 
to methicillin, as well as against many Candida species 
[Sinha et al., 2013]. On the other hand, the peptide of 
the second sequence, rich in basic (Lys and Arg) and 
hydrophobic (Try and Phe) residues, containing a disul-
fide bridge (Cys 19-Cys 36) demonstrates antibacte-
rial and antiviral activities and also inhibits tumor me-
tastasis and induces apoptosis of blood cancer cells. It 
turned out to be much more active than the substrate 
protein. Another peptide released from LF, which is 
a fragment of the LF 268-284 sequence, referred to 
as lactoferrampin, exhibits particularly broad antimi-
crobial activity, including antibacterial and antifungal 
activities [Bruni et al., 2016].

LF may also exert indirect antimicrobial effects by 
stimulating the immune system. Oral administration 
of LF stimulates both a local immune response within 
the lymphatic tissue of the gastrointestinal mucosa 
(GALT) and a systemic response. By inducing the pro-
duction of IgA and IgG antibodies, it affects the secre-
tion of certain cytokines and the activation of B, T and 
NK cells [Legrand et al., 2005; Zimecki & Kruzel, 2007; 
Artym, 2012; Kruzel et al., 2017; Superti, 2020]. 

As shown by Kawashima et al. (2012), through its func-
tion in promoting secretion of tears as well as antioxi-
dant and anti-inflammatory activity in the aging eye, 
LF also has a protective effect against age-related “dry 
eye” syndrome. This protein improves functioning of 
the lacrimal gland, and although the mechanism of this 
process is still unknown, it is believed that it is likely 
due to direct action of LF on the lacrimal gland and its 
overall effect on metabolic processes in the body. It 
can, therefore be recommended as an alternative di-
etary supplement for patients with “dry eye” syndrome.

The antitumor activity of this protein is extremely 
important, which, in addition to its antioxidant and 
immunomodulatory effects also induces apoptosis 
of neoplastic cells and inhibits their proliferation as 
well as the process of angiogenesis, ie. formation of 
new blood vessels necessary for tumor development 
and metastasis [Hsieh et al., 2015, Olszewska, et al., 
2021]. LF is also one of important chemopreventive 
agents contributing both to neutralization of carcino-
gens and many repair processes, including reductions 
in the amount of reactive oxygen species and inhibit-
ing inflammation [Artym, 2012].
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LF also participates in the regulation of metabolism of 
bone and cartilage tissues by stimulating differentia-
tion and proliferation of osteoblasts and chondrocytes 
and inhibiting effects on their apoptosis [Cornish, 
2004; Artym, 2012]. LF influences the metabolism of 
lipids, can inhibit peroxidation of fatty acids and for-
mation of superoxide radicals [Fernandez-Real et al., 
2012; Khan et al., 2019]. The result of numerous stud-
ies also confirm the antihypertensive, anti-stress and 
analgesic effects of LF [Artym, 2012].

All these properties of LF make it widely used in clini-
cal practice [Artym & Zimecki 2013; Garcia-Montoya 
et al., 2011]. Discovery of the human and bovine LF 
gene sequences enabled the production of recombi-
nant protein on an industrial scale. The granting of the 
GRAS status to LF by the FDA and EFSA, which al-
lows its use as a novel food ingredient [Kelly, 2020]
means that it is now widely used commercially in 
food for infants, as an iron supplement, in chewing 
gums, cosmetics and animal feed or as a nutraceutical 
strengthening the immune system in functional foods 
and therapeutic preparations but only in clinical trials 
[Steijns, 2001; Garcia-Montoya et al., 2011; Niaz et 
al., 2019].

2.7. Other whey proteins

Other proteins present in whey, which apart from lac-
toferrin, have an impact on non-specific immune reac-
tions of the body, include two enzymes: lactoperoxi-
dase (LPO) and lysozyme.

LPO is a glyco-hemoprotein containing 0.07% of Fe 
and approx. 10% of sugars. Its molecule with an MW 
of 77.5 kDa is composed of two identical subunits. In 
cow’s milk, its content is approx. 30 mg/L. For com-
mercial purposes, it is isolated from whey. It is one 
of the most heat-resistant enzymes present in milk, 
therefore, it is used for monitoring the effectiveness 
of high-temperature pasteurization processes. It is 
one of the most effective antimicrobial barrier com-
ponent of ruminant milk. LPO catalyzes oxidation of 
thiocyanates by H2O2, resulting in the formation of 
hypothiocyanate, which is toxic to Gram-positive and 
Gram-negative bacteria. LPO was found to be par-
ticularly effective in inhibiting the growth of bacteria 
causing gingivitis and it also contributes to rapid gum 
healing [Smithers, 2015].

The bactericidal effect of the LPO system has found 
wide applications in the treatment of enteritis in 
calves and mastitis in cows and also in milk preser-
vation, especially in the regions with warm weather 
conditions, as well as an additive to toothpaste. LPO 
is also used for preservation of a wide variety of food 
products [Severin, 2015; Flemmig et al., 2016; Costa 
et al., 2021].

The lactoperoxidase system is involved in the break-
down of many carcinogens and has been found pro-
tective against toxic effects of hydrogen peroxide. The 
suppressive activity of this protein against melanoma 
cells of the B-16 lineage has been demonstrated in a 
mouse model [Seifu et al., 2005]. Besides, it has a syn-
ergistic effect with other bioactive milk proteins, e.g. 
lactoferrin.

Lysozyme is a bactericidal hydrolase which lyses main-
ly Gram-positive bacteria by the hydrolysis of β 1-4 
glycosidic bonds between N-acetylmuramic acid and 
N-acetylglucosamine in the peptidoglycan of their cell 
wall. Two of its amino-acid residues are involved in the 
process of catalysis, i.e. glutamic and aspartic acids. 
As has been shown, lysozyme can also affect the cell 
walls of Gram-negative bacteria, especially in synergy 
with lactoferrin [Lönnerdal, 2003; Severin & Wenshui, 
2005]. Micrococcus lysodeikticus bacteria, are particu-
larly sensitive to the lytic activity of the lysozyme. An-
timicrobial properties of the lysozyme enable its use 
as a natural antibiotic for food and fodder preserva-
tion, as well as in medical treatments of various infec-
tions or in antibiotic-supporting therapy.

Lysozyme is also widely used in the treatment of vi-
ral and bacterial infections, treatment of skin and eye 
diseases, gingivitis, leukemia and many cancers [Ben-
kerroum, 2008; Zimecki & Artym, 2005]. It is an ele-
ment of innate immunity, e.g. in saliva, and it protects 
oral cavity against the development of pathogens. It 
also shows anti-HIV activity, reducing the frequency 
of replication of this virus. It is a thermostable protein, 
in heat treated milk at 75°C for 15 minutes or at 80°C 
for 15 seconds, it retains 75% of its initial activity [Za-
gorska & Ciprovica, 2012].

Osteopontin (OPN) is another protein present in whey, 
but in smaller quantities [Schack et al. 2009]. On aver-
age, its concentration in cow’s milk is 18 mg/L, which 
is much lower than in breast milk (138 mg/L). Bovine 
and human OPN exhibit a 61% sequence homology, 
however, these proteins differ in the chain length with 
262 amino acids in bovine OPN compared to 298 resi-
dues in human OPN [Demmelmair et al., 2017]. OPN 
is also found in numerous tissues and body fluids. It is 
an acidic, highly phosphorylated glycoprotein with an 
isoelectric point at pH 3.5 and MW ranges from 45 to 
74 kDa, depending on the degree of phosphorylation 
and glycosylation [Denhardt & Noda, 1998]. It contains 
27 phosphoserine residues and one phosphotreonine, 
which allows it to bind calcium, the affinity to which 
is extremely high (Kd = ~ 3–5 × 10−8 M). Its structure 
includes the Arg-Gly-Asp integrin binding sequence, 
which mediates binding to many different integrins. 
OPN is a multifunctional protein exhibiting a number 
of biological activities, including immunomodulatory, 
antiinflammatory, antitumor and antibacterial activi-
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ties. Due to its ability to bind calcium it has important 
function in the process of biomineralization, which is 
particularly important for bone growth and wound 
healing [Schack et al., 2009; Icer & Gezmen-Karadag, 
2018; Liu et al., 2020].

Bovine OPN, similarly to human OPN, exhibits a strong 
affinity to positively charged LF, forming complexes of 
increased bioactivity [Jiang et al., 2020; Jiang et al., 
2020]. OPN is obtained from GMP-free acid whey. It 
is used mainly for the production of humanized food, 
in which its concentration is increased to the level of 
human milk (i.e. 2.1% in relation to all proteins) and in 
clinical nutrition. It is also used as a dietary supplement 

for adults [Jang & Lorendal, 2016]. Today recombinant 
OPN is available commercially [Jiang et al., 2021].

3. Conclusions

Whey contains a wide array of proteins of high nu-
tritional value, beneficial to human health, which im-
prove metabolic processes via direct mechanisms or 
indirectly. For this reason, these proteins and products 
of their modifications, especially biologically active 
peptides, are very attractive nutraceuticals for food 
and pharmaceutical applications.
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